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Similarity and scaling arguments underlying the existence
of a logarithmicwind profile in the atmospheric surface layer
(ASL) rest on the restrictive assumptions of negligible Cori-
olis effects (no wind turning in the ASL) and vertically uni-
form pressure gradients (barotropic atmospheric boundary
layer (ABL)). This paper relaxes these asymptotic arguments
to provide a realistic representation of the ASL where the
commonoccurrence of baroclinicity (height-dependent pres-
sure gradients) and wind turning, traditionally treated as
outer-layer attributes, take part in modulating the ASL. The
approximation of a constant-stress ASL is first replaced by
a refined model for the Reynolds stress derived from the
meanmomentumequations to incorporate the cross-isobaric
angle (directional shear) and a dimensionless baroclinicity
parameter (geostrophic shear). Amodel for thewind profile
is then obtained from first-order closure principles, correct-
ing the log-law with an additive term that is linear in height
and accounts for the combined effects of wind turning and
baroclinicity. Both the stress and wind models agree well
with a suite of large eddy simulations in the barotropic and
baroclinic ABL. The findings provide a methodology for the
extrapolation of near-surface winds to some 200 m in the
near-neutral ABL for wind energy applications, the valida-
tion of the surface cross-isobaric angle in weather and cli-
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mate models, and the interpretation of wind turning in field
measurements and numerical experiments of the Ekman
boundary layer.

K E YWORD S

Logarithmic wind profile; Rossby number similarity; Wind turning;
Baroclinicity; Thermal wind

1 | INTRODUCTION

Accurate representation of the wind and momentum flux profiles above land or ocean surfaces is an increasingly
pressing inquiry in a wide range of applications, including the extrapolation of near surface winds to higher elevations
in the atmospheric boundary layer (ABL) (Gualtieri and Secci, 2012; Simiu et al., 2016), and the long-standing need for
improved parameterization of surface boundary conditions in coupled land-atmosphere models (Floors et al., 2013;
Ansorge, 2019). The latter has traditionally focused on surface drag (e.g. Wu, 1980; Garratt, 1994), but some studies
have also noted the inadequate representation of the surface cross-isobaric angle (orientation of surfacewinds relative
to the geostrophic flow aloft) in operational weather models (Brown et al., 2005), with a tendency to underestimate
wind turning (Svensson and Holtslag, 2009). The fast growth in the wind energy industry has also invited considerable
attention to the development of wind profile models at heights extending to 100-200 m in the ABL (Gryning et al.,
2007; Draxl et al., 2014; Peña et al., 2016; Murthy and Rahi, 2017; Holtslag et al., 2017; Yang et al., 2017; Kent et al.,
2018). Reliable models for the wind and wind shear at such hub heights are critical in the assessment of wind power
potential for farm siting and for estimating fatigue loads on wind turbines (Calaf et al., 2010; Mirocha et al., 2018).

At the center of the foregoing discussion is the logarithmic wind profile in the atmospheric surface layer (ASL),
its vertical extent, and its link to the constant stress assumption often invoked in flux-gradient closure models. While
a constant stress profile is characteristic of zero pressure-gradient boundary layers, Monin and Obukhov (1954) sug-
gested that it remains a ‘practical’ approximation in the ASL, which they estimated as a layer of ∼ 50 m depth above
the surface where a 20% change in the stress from its surface value is tolerable for a constant stress assumption. In
arriving at these estimates, Monin and Obukhov (1954) discarded the partial compensation to the pressure gradient
by the Coriolis force, and further approximated that the effect of this pressure gradient results in ∼20% change in
the stress within the ASL. The logarithmic wind profile can then be obtained from dimensional analysis or through
first-order closure principles with a turbulent viscosity1 Km = κu∗z , κ being the von Kàrmàn constant, u∗ the friction
velocity, and z the height above a surface with roughness length z0. These scaling laws are the foundation of modern
micrometeorology, and although field measurement campaigns such as the Kansas experiment did not establish a
constant stress even within 20-30 m above the surface (Haugen et al., 1971; Businger et al., 1971), the discussion on
any departure from the logarithmic profile was largely limited to a possible uncertainty in the von Kàrmàn constant
(Tennekes, 1973; Kaimal and Wyngaard, 1990; Högström, 1996). However, in discarding the effects of the Coriolis
force, this (practically constant stress) framework also has the strict requirement that the wind vector does not change
direction in the ASL (wind turning is limited to the outer layer). The latter requirement gives rise to an inconsistency
on whether the log-law applies for the wind speed (magnitude of the wind vector) as is commonly assumed in large
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1It is not uncommon to reverse this argument and derive Km = 2κu∗z as the eddy viscosity on the basis that the stress is constant (= u∗ ) and the wind profile
is logarithmic. All these arguments however are a consequence of the assumption that κz and a unique u∗ are the only length and velocity scales in the ASL.
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eddy simulation (LES) and direct numerical simulation (DNS) of the Ekman boundary layer (e.g. Coleman et al., 1990;
Spalart et al., 2008; Jiang et al., 2018), or for the longitudinal wind component in the direction of surface stress as un-
derstood in field measurements (e.g. tall meteorological towers), where the reference frame is aligned with the mean
wind direction locally (i.e. at each height) (e.g. Carl et al., 1973; Horiguchi et al., 2012). Admittedly, the two approaches
must be identical in theory, namely in the limit of an infinite surface Rossby number (Blackadar and Tennekes, 1968;
Tennekes, 1973), yet the disparity is a direct consequence of the asymptotic nature of this theory.

Tennekes (1973) argued that the derivation of a logarithmic wind profile in the ASL is independent from the
constant-stress assumption, and similar to its derivation in the canonical turbulent boundary layer at an infinite
Reynolds number (Katul et al., 2013; Klewicki and Oberlack, 2015), the log-law results from similarity principles based
on an infinite surface Rossby number Ro = G0/f z0 (f is the Coriolis parameter andG0 is the magnitude of the surface
geostrophic wind vector). It is only in this (Ro → ∞) limit that the dimensionless heights z/z0 and f z/u∗ determine
a similarity solution for the inner layer (f z/u∗ → 0 but finite z/z0) and the outer ‘Ekman’ layer (z/z0 → ∞ but finite
f z/u∗), respectively. An asymptotic matching of these solutions and their derivatives in an overlap (inertial) region
results in a logarithmic wind profile. Nevertheless, this asymptotic matching procedure may not provide a realistic rep-
resentation of ABL flows: the Ro similarity theory itself predicts the geostrophic drag coefficient u∗/G0 and surface
cross-isobaric angle α0 as decreasing functions of Ro (e.g. Hess and Garratt, 2002; Zilitinkevich and Esau, 2005), such
that α0 becomes asymptotically zero only as Ro → ∞. In practice, the ASL typically resides between the constant
eddy-viscosity limit proposed by Ekman (1905) (α0 = π/4) and the infinite Ro limit of the similarity theory (α0 → 0).
A consequence of this finite Ro effect is that the outer layer modulates the ASL (Tennekes, 1973), i.e. an ASL where
f z/u∗ → 0 but z/z0 remains finite is limited to heights extremely close to the surface. This has important implications
on the vertical extent of the logarithmic wind profile as the effects of directional shear due to wind turning become
more pronounced near the surface, hence requiring a proper account of the cross-isobaric angle in modelling the wind
and stress profiles.

In itself, the assumption that Ro is the only external parameter restricts the similarity theory to a steady-state,
neutral, and barotropic ABL (mean pressure gradients or geostrophic winds do not vary with height). Among other
common departures from this idealization, such as unsteadiness (e.g. Momen and Bou-Zeid, 2016; Pan and Patton,
2017; Cava et al., 2019) and/or buoyancy (e.g. Salesky et al., 2013; Ghannam et al., 2017), the effects of baroclinicity
on the wind and stress profiles remain poorly studied. Baroclinicity arises from large scale horizontal temperature gra-
dients, leading to height-dependent atmospheric pressure gradients from the thermal wind balance. These effects are
difficult to disentangle in single-point field measurements (meteorological towers), and LES experiments have offered
a deeper insight into their profound implications on the dynamics of the ABL (Brown, 1996; Sorbjan, 2004; Momen
et al., 2018). At least from a theoretical/modelling perspective, the effects of baroclinicity on the logarithmic wind
profile and its interaction with wind turning are largely unexplored. This theoretical challenge is primarily associated
with the additional similarity parameters (geostrophic shear and its orientation angle) that baroclinicity introduces to
the parameter space of the ABL. As a result, and since field measurements often encode a strong signature of thermal
winds (Arya and Wyngaard, 1975; Floors et al., 2015), the discussion on the exact value of the von Kàrmàn constant
as inferred from log-law fits to observational data becomes hardly warranted. Evidently, the tendency in interpreting
field measurements is to dismiss baroclinicity as a large scale (outer layer) effect (Floors et al., 2013), and most studies
have focused on its consequences on the resistance laws for u∗/G0 and α0 (e.g. Hess, 1973; Arya, 1978). It must
be acknowledged that some studies have provided analytical solutions for the baroclinic Ekman layer with height-
dependent eddy viscosity profiles (Nieuwstadt, 1983; Berger and Grisogono, 1998), but these solutions appear in the
form of hypergeometric functions that are less useful in practical applications, at least compared to the ease of use
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of the logarithmic wind profile. The recent work by Momen et al. (2018) also proposed a closed form model for the
velocity profiles throughout the baroclinic ABL using the parabolic eddy viscosity model of O’Brien (1970). While
the model (consisting of two ordinary differential equations) needs to be integrated numerically using an iterative
approach, its predictions matched well with the LES output for a variety of geostrophic wind profiles.

The objective of this paper is to incorporate wind turning and baroclinicity in an analytical model for the wind
profile in the lowest few hundred meters of the neutral ABL. The central thesis is not so much to argue against the
existence of a logarithmic scaling, albeit its theoretic character in the baroclinic ABL remains uncorroborated, but
rather to emphasize that the asymptotic nature of its derivation limits its vertical extent and/or its link to a constant
stress assumption in practical applications. We therefore focus first on the derivation of an improved model for the
stress profile that accounts for Coriolis effects and geostrophic shear, which forms the basis for a more accurate wind
profile using the traditional eddy viscosity closure. Model validation relies on a suite of LES experiments that span
the barotropic ABL at different surface Rossby numbers to investigate the increased effect of wind turning in the ASL
as Ro decreases, and several baroclinic cases where the magnitude and/or direction of the geostrophic wind vector
are varied. The rest of the paper is organized to provide a brief background and definitions in section 2, theory and
model development in section 3, LES setup in section 4, followed by results and model validation in section 5 and
conclusions in section 6.
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2 | EQUATIONS OF MOTION AND DEFINITIONS

This section introduces the equations of motion and provides a brief background on themain arguments of the Rossby
number similarity theory. In a steady-state ABL over a flat terrain with a hydrodynamic roughness length z0, the mean
horizontal momentum equations in the Boussinesq approximation reduce to (e.g. Stull, 1988)( ) dτx

f V −Vg = − , (1)dz

( ) dτy
f U −Ug = , (2)dz

where (U ,V ) are the mean horizontal wind components along the (x ,y ) plane (parallel to the surface); (τx = −u′w ′,( ) τ =( ) y

−v ′w ′) are the corresponding kinematic stresses; Ug ,Vg = ρf ∂)−1 P( − , ∂P∂y ∂x are the geostrophic wind components
that represent the horizontal gradients in mean (large-scale) pressure P , and can depend on the height (z ) above the
surface in baroclinic conditions; ρ is the fluid density and f is the Coriolis parameter (here for the northern hemisphere).
An overbar denotes Reynolds averaging (over time and the (x ,y ) plane for the LES outputs); and primes indicate
turbulent fluctuations around this average.

Scaling and dimensional arguments for Equations 1 and 2 have mostly relied on the assumption of a barotropic[ ]
ABL where the magnitude of the geostrophic wind vector G0 = Ug (0),Vg (0) is height-independent. The available
velocity scales are then G0 and the surface friction velocity u∗ (defined by u4∗ = τ2 + τ2x0 y0 with subscript 0 indicating a
value at the surface z0), and the length scales are z0 and u∗/f . Since the equations of motion do not stipulate which
combination of velocity and length scales are appropriate for the problem, the choice of external (G0 and z0) or internal
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(u∗ and u∗/f ) scales results in the dimensionless forms( ) ( )
d τ 2

x /G d τ 2/1 V −Vg 0 1 U − y GUg 0
= − ; = , (3)

Ro G0 d (z/z0) Ro G0 d (z/z0)

and ( ) ( )
V −V d τ 2

x /ug ∗ U −U d τ 2
y /u

; g ∗
= − = , (4)

u∗ d (f z/u∗) u∗ d (f z/u∗)

respectively. The use of G0 and z0 in Equations 3 is intended to depict the surface Rossby number explicitly such
that taking the limit Ro → ∞ would result in constant stress profiles, provided that z/z0 remains finite and f z/u∗ →
0. Blackadar and Tennekes (1968) presented this argument using u∗ (instead of G0) as a velocity scale so that the
dimensionless number u∗/f z0 appears instead of Ro in Equations 3, but in either case the limits Ro →∞ or u∗/f z0 →
∞ yield a definition of the ASL as an analogue to the inner (viscous) region of the canonical turbulent boundary layer
(George and Castillo, 1997). The velocity defect laws in Equations 4 characterize the outer layer, namely where the
normalized stresses and velocity deficits are unique functions of the dimensionless height f z/u∗, provided u∗ remains
the proper velocity scale for the outer layer. Consequently, the logarithmic law U/u∗ = κ−1 ln(z/z0) is derived in the
ASL by matching the slopes of the inner layer velocity profiles, U/u∗ = F(z/z0) andV /u∗ = 0, to those of the outer
layer velocity defect profiles (Equations 4) in the limit Ro →∞.

It is worth emphasizing that V = 0 results from aligning the reference frame (x-axis) with the surface stress or
near surface wind such that τx = u2∗ and τy = 0, and hence the geostrophic wind would be oriented at an angle α0
(cross-isobaric angle) relative to the x-axis. The alternative choice of aligning the reference frame with the surface
geostrophic wind results in V , 0, i.e. the surface wind vector is oriented at α0 relative to the x-axis. These two
choices are simply a rotation of the x-axis at the surface by an angle α0, and in either case the Ro →∞ limit requires
that α0 remains constant throughout the ASL, namelyV in the ASL must remain equal to its near-surface value (0 or
constant) (Tennekes, 1973).

The angle α0 and its relation to the geostrophic drag coefficient u∗/G0 are also determined from the asymptotic
matching procedure (e.g. Peña et al., 2010):

B usin ∗(α0) = , (5)
κ G0

where B is an empirical but supposedly universal parameter (Clarke and Hess, 1974; Arya, 1975). The universality
of B is a consequence of the aforementioned matching procedure in a steady state, neutral, and barotropic ABL.
However, its determination from field measurements has shown large scatter, with an average estimate of B ≈ 4.4
(Hess and Garratt, 2002). Numerical experiments suggest B ≈ 2.7 in LES (Andren et al., 1994), and B ≈ 2.3 in the
high Reynolds number range of the DNS experiments by Spalart et al. (2008). The elusive nature of this parameter
in field measurements has been attributed to the presence of baroclinicity and heat entrainment in the atmosphere,
and Zilitinkevich and Esau (2002) argued that B is a function of static stability in the free troposphere and of the
ABL height (zi ). The height zi scales with u∗/f via the Rossby-Montgomery formula (Rossby and Montgomery, 1935;
Zilitinkevich, 1972)

u∗
c = , (6)

f zi
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where the parameter c typically ranges between 2 and 6 in field measurements (Hess and Garratt, 2002). Note that
both B and c can depend on baroclinicity, and Arya andWyngaard (1975) and Arya (1978) denoted zi as a scale height
rather than an ABL height in a baroclinic atmosphere.

In the baroclinic ABL, the geostrophic winds in the equations of motion become height-dependent, and Ro and
u∗ are no longer sufficient to describe a similarity solution akin to Equations 3 and 4. The geostrophic shear vector
(dUg /dz , dVg /dz ) therefore has to be taken into account (Hess, 1973). These gradients can be approximated from
the thermal wind equations

dUg g ∂θ dVg g ∂θ≈ − , ≈ , (7)dz f θr ∂y dz f θr ∂x

where θr is a reference Boussinesq temperature, g is the gravitational acceleration, and θ is a Reynolds-averaged
potential temperature. A total derivative is used in these equations for the steady state ABL andwhen additional terms
proportional to vertical gradients in potential temperature (∂θ/∂z ) are negligibly small compared to their horizontal
counterparts (Arya and Wyngaard, 1975). When temperature gradients exist in the y -direction only, the baroclinic
ABL is either under positive shear (dUg /dz > 0) or negative shear (dUg /dz < 0), both with dVg /dz = 0. In these cases
the geostrophicwind vector does not rotatewith height and the isobars remain parallel to the isotherms (this is at times
referred to as an equivalent barotropic atmosphere) (Wallace and Hobbs, 2006). Conversely, when dUg /dz = 0, warm
(dVg /dz < 0) and cold (dVg /dz > 0) advection arise due to temperature gradients along the isobars (Sorbjan, 2004), and
the geostrophic wind vector rotates with height leading to directional geostrophic shear. The effects of baroclinicity
can be generally characterized by the total geostrophic shear and its orientation angle (Arya and Wyngaard, 1975)√( ) (d 2 ( ) )

Ug d 2Vg dVg /dz
Γ = + 1, β = tan− , (8)dz dz dUg /dz

which can be height-dependent, but here we focus on linear variations of the geostrophic winds (constant geostrophic
shear) within the ABL, such that Γ = Γ0 and β = β0.

In the next section, we develop a model that incorporates the aforementioned effects of wind turning (i.e. finite
Ro effects leading to V , constant) and baroclinicity on the stress and wind profiles in the lower part of the ABL.
Again, the premise is that the ‘theoretical’ ASL, defined as the region where f z/u∗ → 0 but finite z/z0, is confined to
a very thin layer (close to the surface) at finite Ro , such that the effects of the Coriolis force and baroclinicity on the
wind profiles are non-negligible even in the lowest 50-100 m of the ABL. We first simplify the equations of motion
to obtain a reduced expression for the Reynolds stress profile (subsection 3.1), which will require a model for the
cross-isobaric angle (subsection 3.2). The wind profile is then derived in subsection 3.3.

3 | THEORY

We consider Equations 1 and 2 in a coordinate system aligned with the geostrophic wind vector at the surface such
that Ug (0) = G0 and Vg (0) = 0. The mean horizontal wind, geostrophic wind, and total stress have magnitudes√ √ √

2 2
M (z ) = U +V ,G (z ) = U 2g +V

2
g , and τ (z ) = τ2x + τ

2
y , respectively, with generally height-dependent orientation
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angles defined by 163

V V τ ′w ′tan(αM ) = ; tan g y −v(αG ) = ; tan(ατ ) = = . (9)
U Ug τx −u′w ′

These angles are defined in the interval [−π, π ] (full trigonometric circle) relative to the surface geostrophic wind
direction (αG (0) = 0). In this form, the boundary conditions for the mean wind and stress components become[ ] [ ]

0 τx0 = u
2
∗ cos (α0)

M®0 = , and τ®0 = ; at z = z0 (10)
0 τy0 = u

2
∗ sin (α0)

and [ ] [ ]
Ug τx = 0

M® = , and τ® = 0 = ; at z →∞. (11)
Vg τy = 0

where α0 = ατ (0) = αM (z → z0) is the angle between the surface stress (or near surface) wind and the surface
geostrophic wind.

In our LES and the analyses to follow, the geostrophic wind profiles are considered to vary linearly with height; a
good approximation in the ABL (Arya and Wyngaard, 1975). These profiles are

Ug UT z Vg VT z
= 1 + ; = , (12)

G0 G0 δ G0 G0 δ

such that the geostrophic shear components (thermal winds gradients in s−1) are dUg /dz = UT /δ = Γ0 cos(β0) and
dVg /dz =VT /δ = Γ0 sin(β0) , where UT andVT are the components of the thermal wind vector at a height δ (e.g. top
of the ABL) relative to the surface. In a barotropic ABL, UT =VT = 0.

3.1 | Reynolds stress profile

Using our aforementioned convention, we rewrite Equations 4 as

d
M̂ sin(αM ) − Ĝ sin(αG ) = − [τ̂ cos(ατ ) ] , (13a)dẑ

d
M̂ cos(αM ) − Ĝ cos(αG ) = [τ̂ sin(αd τ ) ] , (13b)

ẑ

where the ˆ symbol represents dimensionless variables (M̂ = M /u∗, Ĝ = G/u∗, τ̂ = τ/u2∗ , and ẑ = f z/u∗). Since in
the presence of Coriolis effects the wind angle typically lies in the range 0 < αM < π/2, we divide Equation 13a by
sin(αM ) and Equation 13b by cos(αM ) , which requires that αM , 0 and αM , π/2, and subtract them to obtain after
some algebra [ ]

dτ̂ 1 dα
= −Ĝ sin τ(α τ̂d M − α ) −

ẑ cos G sin(αM − ατ ) , (14)(αM − ατ ) dẑ

a first-order ordinary differential equation for the magnitude of the stress in terms of the external parameters G and
αG , and the internal variables αM and ατ . Equation 14 is merely a restatement of the equations of motion, written in
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reduced form such that αM (but not M ) appears in the stress profile. In the lower part of the neutral ABL, the wind
vector is closely aligned with the Reynolds stress (e.g. Geernaert, 1988; Jiang et al., 2018), i.e. ατ ≈ αM . Equation 14
then reduces to

dτ̂
= −Ĝ sin(αd M − αG ), (15)

ẑ

which upon integration from the surface to some height z within the ABL results in the stress profile∫
τ (z ) f z

= 1 − G sin(αM − αG ) dz ′, (16)
u2∗ u2∗ z0

where we used the boundary condition τ0 = u2∗ . Equation 16 is a generalized profile for the magnitude of the Reynolds
stress in a barotropic (G = G0) or baroclinic [G = G (z )] ABL; the only assumption being that the stress andwind vectors
are closely aligned in a region z � u∗/f . This is a common assumption in the ASL, and implies that the wind vector
and the wind-shear vector are also aligned. Close to the surface, dU/dz ∼ U/(z − z0) and dV /dz ∼ V /(z − z0) , and
since τx ∼ dU/dz and τy ∼ dV /dz , then τy /τx ∼ V /U , or ατ = αM . Alternatively, the argument can also be made
that Equation 15 (i.e. retaining only the term −Ĝ sin(αM − αG ) from Equation 14) reproduces the stress profile in the
ASL accurately. This argument is plausible since the term containing Ĝ in Equation 14 is much larger than the second
term. Figure S1 in the Supporting Information compares the right hand side (r.h.s.) of Equations 14 and 15 from our
LES output (described later) in both the barotropic and baroclinic ABL, showing that these match very well in the ASL
and hence Equation 15 provides a good model for the stress profile in the surface layer.

Some comments on this stress profile in the context of ABL modelling are noteworthy. A constant stress (τ = u2∗ )
commensurate with the zero pressure gradient boundary layer (ZPGBL) (e.g. George and Castillo, 1997;Wu andMoin,
2009) can be recovered from Equation 16 by setting G = 0, i.e. no geostrophic forcing or equivalently zero pressure
gradient, but this represents the least realistic framework to investigate theABL. Inmodelling theABL as a half-channel
flow (constant pressure gradient −ρ−1∂P /∂x = −f G = u2∗/δ ) without Coriolis effects, and using sin(αM − αG ) = 1,
integrating Equation 16 results in a linear stress profile( )

2 z − z0
τ (z ) = τx (z ) = u∗ 1 − and τy = 0 in 0 ≤ z ≤ δ, (17)

δ

where δ is the channel half-width here. This profile shows that at z − z0 = 0.1δ (typical depth for the ASL), the stress
would decrease by 10% from its surface value, an underestimation of its decrease in a realistic ABL (e.g. exponential
decaymodels by Zilitinkevich and Esau, 2005). To compare ourmodel to the ‘practically’ constant stress approximation
proposed byMonin and Obukhov (1954), we consider Equation 16 at some height z = H in a barotropic ABL (G = G0),
where H represents a typical ASL height similar to Monin and Obukhov (1954). Rearranging, we obtain the change in
the stress within this layer as

τ (H ) − u2 ∫
∗ f G H

0
= − sin(αM ) dz ′; αM , 0. (18)

u2 u2∗ ∗ z0

This expression is similar to that obtained by Monin and Obukhov (1954), except that their estimates ignore the
integral of sin(αM ) (wind turning). Conversely, Equation 18 incorporates the cross-isobaric angle (directional shear)
in modelling the stress profile in the barotropic ABL.

In its most general form however, Equation 16 can be used to model the stress profile in a baroclinic ASL. In
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the common cases where baroclinicity is well approximated by linear profiles of the geostrophic winds, this equation
becomes [ ∫ z ∫ z ∫ z ]

τ (z ) f U
1 − G0 sin dz ′ T(αM ) + ′ Vsin T

= z (α d ′
M ) z ′ − z ′ cos (αM ) dz (19a)

u2 2 δ δ∗ u∫∗ z0 z0 z0

ẑ ∫ ẑ
1

= 1 − Ĝ sin (α ) dẑ ′0 M − Γ ˆ0z ′ sin (αM − β0) dẑ ′. (19b)
f0 0

The right hand side of Equation 19a expresses how the surface stress changes with height due to the surface pres-
sure gradient and Earth’s rotation (second term, as in barotropic), and the effects of positive (UT > 0) or negative
(UT < 0) geostrophic shear (third term) and/or warm (VT < 0) or cold (VT > 0) advection (last term). Equation 19b
uses the baroclinicity parameters [(Γ0 cos β0, Γ0 sin β0)≡(UT /δ ,VT /δ )] to show that the profile of the normalized stress
and subsequently that of sin(αM ) are unique functions of the dimensionless parameters Ĝ0, ẑ , f −1Γ0, and β0; in accor-
dance with the similarity theory. It will prove useful to combine the two baroclinicity parameters into a dimensionless
parameter γ as

1
γ = Γ0 (cos β0 − sin β0) , (20)

f

which represents the effect of UT /δ and VT /δ . Given a known external geostrophic forcing G (z ) , the stress profile
(Equation 19) only requires a model for sin(αM ) .

3.2 | Cross-isobaric angle

In a barotropic ABL, the profile of sin(αM ) must be a unique function of ẑ , and decreases from its surface value sin(α0)
to zero near the ABL height, or at the scale height where the stress gradients vanish and the geostrophic balance is
established (e.g. Arya and Wyngaard, 1975). A plausible model is sin(αM ) = sin (α0) e−cẑ , which indicates that wind
turning is strongest in the surface layer of the barotropic ABL. To accommodate the effects of baroclinicity on the
profile of sin(αM ) , we use the similarity form of Equation 19b where the linearity of the last integral in ẑ is suggestive
of the implications of baroclinicity on sin(αM ) , which we then represent as[ ]

sin(αM ) = sin −cẑ γ(α0) e + ẑ , (21)
Ĝ0

with γ as given by Equation 20, and the boundary condition sin (α0) is to be determined. The Rossby number similarity
theory of the barotropic ABL predicts that sin(α0) is proportional to u∗/G0 with the empirical parameter B (Equation
5), and Clarke and Hess (1974) argued that this relation remains valid in the baroclinic ABL but with B dependent on
baroclinicity.

A relation for sin(α0) analogous to Equation 5 can be derived from our Equation 15, which when evaluated in the
limit ẑ → ẑ0 gives ( ) �

dτ̂ � 1sin(α0) = − �
dẑ � ˆẑ→ẑ G0 0 (22)

B u∗
= ,
κ G0
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10 Ghannam et al.

where we used αG (ẑ → ẑ0) = 0 and αM (ẑ → ẑ0) = α0. Equation 22 is analogous to Equation 5 but obtained from
independent arguments. The second line in Equation 22 makes this analogy with B/κ = −(dτ̂/dẑ ) |ẑ→ẑ0 , elucidating
the physical origin of B/κ as the stress gradient at the surface. The dependence of B on baroclinicity is also inferred
from the last integral in Equation 19b, namely the additive term f −1Γ0 (f zi /u∗) sin(α0 − β0) , where we followed the
integral-measure approach of Arya and Wyngaard (1975) and Arya (1978) to include the scale height f zi /u∗ (rather
than f z0/u∗) in this dependence. The general relation for sin(α0) becomes

B usin ∗(α0) = (23a)
κ G0

B B0 1 Γ0
= − sin (α0 − β0) , (23b)

κ κ c f

where we used c = u∗/f zi . Equation 23a maintains the form of the resistance law (Equation 5) of the similarity
theory, but incorporates baroclinic effects on the parameter B (Equation 23b) as the sum of a barotropic part B0,
and deviations due to baroclinicity. This baroclinic deviation is similar to the form suggested by Arya (1978) for the
convective ABL, which reads (in their notation) m2κ (zi /u∗)Γ0 sin(β0 −ηm ) , where m2 is the integral of the geostrophic
shear over zi , and ηm is an empirical phase angle. Our correction eliminates the need for ηm , but at the expense of
being an implicit relation where sin(α0) appears on the r.h.s. of Equation 23b.

Given the knowledge of Γ0, β0, and u∗/G0, Equation 23b relates the two unknown parameters B and c in a baro-
clinic ABL, such that the knowledge of either is sufficient. In general, both B and c depend on baroclinicity. The
common parametric (or prognostic) approach would determine B (and subsequently sin(α0)) from Equations 23 aided
by the knowledge of the scale height ratio c (e.g. Arya andWyngaard, 1975; Arya, 1978). This is oftenmotivated by the
relatively weak dependence of c on baroclinicity (see e.g. Zilitinkevich and Esau, 2003), such that when (B/κ−B0/κ) is
plotted against f −1Γ0 sin(α0−β0) , the relation is close to linear (with a constant slope−1/c). Alternatively, an optimized
(diagnostic) approach determines B = κG0 sin(α0)/u∗ using Equation 23a along with observational or numerical simu-
lation data, and diagnoses the dependence of c on baroclinicity from Equation 23b. These prognostic and diagnostic
approaches will be discussed in further detail as part of the results in section 5.

Regardless of the approach, substituting Equation 23a in 21, the profile of sin(αM ) becomes[ ]
Bsin(α −cẑ γ

M ) = e + ẑ , (24)
κĜ ˆ

0 G0

and hence the stress profile can be obtained by integrating Equation 19b using 24 to yield[( ) ( )] [ ( )]B γ 2γ
τ̂ (ẑ ) = 1 + e−cẑ − 1 1 + 1 + ˆ 1 − ẑ + 2z ẑ , (25a)

cκ cĜ ˆ
0 G[( ) ( )] 0

B
1 + e−cẑ

γ≈ − 1 1 + . (25b)
cκ cĜ0

The series expansion in the last bracket of Equation 25a results from truncating a Taylor series of an exponential
function, but since this term is present only in baroclinic conditions (γ , 0) and remains small in the ASL ( ẑ � 1), the
stress can be modelled by Equation 25b with sufficient accuracy in the ASL. In accordance with the similarity theory,
Equation 25b recovers a constant stress τ̂ = 1 in the limit ẑ → 0 for both barotropic and baroclinic conditions.
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3.3 | Eddy viscosity and wind profiles

The wind speed (M ) profile can now be derived using a first-order closure model. Starting with such a model for the
individual wind components (with an eddy viscosity Km )

U V
τ = −u′w ′ d
x = K ′

m ; τd y = −v w ′
d

= Km , (26)
z dz

we multiply the first of these Equations by U and the second byV and add them to obtain( )1 d 2 2
Uτx +Vτy = Km U +V . (27)

2 dz

Using U = M cos(αM ) , τx = τ cos(ατ ) , and similarly for other terms, Equation 27 becomes

dM
τ cos(αM − ατ ) = Km , (28)dz

such that the assumption ατ ≈ αM (consistent with the previous section) results in τ = KmdM /dz .

We use the linear eddy viscosity model Km = κu∗z in the surface layer (the friction velocity u∗ depends on
baroclinicity), which while itself may be a consequence of a log-law and constant stress ASL, remains a justifiable
model on the grounds that u∗ is the near-surface turbulence velocity scale and κz is the dominant mixing length in the
ASL in accordance with Townsend’s attached eddy model (Townsend, 1961; Meneveau and Marusic, 2013; Ghannam
et al., 2018). The wind profile can then be obtained by integrating τ = KmdM /dz (from Equation 25b)( ) ( ) ( )

M (z ) 1 z B f z B u f z
= ln ∗

+ + γ , (29)
u∗ κ z κ2 u κ20 ∗ cG0 u∗

where we used ẑ = f z/u∗. This wind model reduces to the log-law only in the limit f z/u∗ → 0 (or Ro → ∞), but
incorporates outer layer effects due to wind turning (second term on the r.h.s.) and baroclinicity (third term on r.h.s.).
The stress and wind models given in Equations 25b and 29 will now be tested against a suite of LES experiments of
the neutral ABL with a variety of barotropic and baroclinic geostrophic forcing.

4 | LARGE EDDY SIMULATIONS

The LES code used herein solves the three-dimensional filtered momentum equations written in rotational form (Bou-
Zeid et al., 2005; Kumar et al., 2006), such that the incompressible continuity equation is enforced by solving a Poisson
equation for a modified pressure (turbulent kinetic energy is subtracted from the pressure). The general setup of the
code follows Momen et al. (2018), but our setup does not include a capping temperature inversion. Such an ABL is
typically referred to as truly-neutral, as opposed to conventionally-neutral ABL (no surface heating but a temperature
inversion at the ABL top can result in downward heat flux). In the Supplementary Information, we reproduce some
of the results presented hereafter for the conventionally-neutral barotropic and baroclinic ABL, showing that the
presence of a capping inversion has negligible effects on our modelling results for the ASL. Even with no surface or
entrainment buoyancy fluxes, a conservation equation for potential temperature is solved in our LES code with some
modifications (discussed below) to account for the imposed large-scale horizontal temperature gradients that result
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12 Ghannam et al.

in baroclinicity (Equation 7) (Brown, 1996; Momen et al., 2018). The filtered mass, momentum, and thermal energy
conservation equations are

∂ũi = 0; (30)
∂xi

( )
∂ũ ∂ũ ∂ũ 1 ∂p̃∗ ∂τi j ˜

i θ∗i j ( ) ( )
+ ũ j − = − − + g δi3 + f Ug − ũ1 δi2 − f Vg − ũ2 δi1; (31)

∂t ∂xj ∂xi ρ ∂xi ∂xi θr

∂θ̃∗ ∂θ̃∗ ∂Θ ∂Θ ∂πj
+ ũ j + ũ + ṽ = − , (32)

∂t ∂xj ∂x ∂y ∂xj

where xi ≡ (x1, x2, x3) ≡ (x , y , z ) and ũi ≡ (ũ1, ũ2, ũ3) ≡ (ũ, ṽ , w̃ ) are the position and resolved velocity vectors,
respectively; τi j is the deviatoric part of the subgrid-scale (SGS) stress tensor; and δi j is the Kronecker delta. The
tilde ˜ denotes the resolved component of the variables. In this form, the mean horizontal pressure gradients are( )( )
imposed as prescribed geostrophic winds Ug ,Vg = ρ ∂( f )−1 P− , ∂P θ̃∗∂y ∂x in the code. In Equations 31 and 32, is
a modified potential temperature that is derived to be horizontally periodic over the domain (needed because our
horizontal numerical gradients are computed using pseudo-spectral methods). If one defines the Reynolds average
potential temperature Θ = θ that varies in x and y in a baroclinic ABL, and its planar (x ,y ) average 〈Θ〉(x ,y ) , then
θ̃∗ = θ̃+ 〈Θ〉(x ,y ) −Θ. Physically, it represents the instantaneous potential temperature fromwhich themean horizontal
trend is removed (see Momen et al. (2018) for full derivation). The advective terms ũ∂Θ/∂x and ṽ ∂Θ/∂y represent
the horizontal heat transport associated with the baroclinic large scale temperature gradients, but both Brown (1996)
and Momen et al. (2018) showed that the implications of these heat fluxes and the buoyant forces they generate on
the wind profiles are negligible in the ABL with zero surface buoyancy flux.

In our LES code, spatial derivatives are discretized through second-order centred finite differences in the vertical
(z ) and pseudo-spectral differentiation in the horizontal (x , y ) directions. Periodic boundary conditions are hence
employed in the horizontal directions and time integration uses the second-order Adams-Bashforth method. The
SGS stress is modelled with the Lagrangian averaged scale-dependent dynamic model (Bou-Zeid et al., 2005), while
the SGS heat flux model uses the dynamically-computed SGS viscosity and a constant SGS Prandtl number of 0.4.
The wall model computes the surface stress from the resolved horizontal velocity field at the very first grid point by
assuming a local logarithmic law, with test filtering at scale 2∆ to better reproduce the mean surface stress (Bou-Zeid√
et al., 2005), ∆ = dxdy being the LES filter width and dx = dy the horizontal grid spacing. Both the upper and lower
boundaries are impermeable (zero vertical velocity). Furthermore, the upper boundary condition is stress-free, and
both the lower and upper boundaries have zero heat flux. Since we do not have a temperature inversion, no damping
or sponge layer are imposed. Including an inversion with a sponge layer has no bearing on our conclusions (see the
Supplementary Information for the results with an inversion-topped ABL where a sponge layer is imposed for the
upper 25% of the LES domain).
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Ghannam et al. 13

4.1 | Simulation setup and control parameters

Eleven simulations are performed here, with five barotropic cases at different surface Rossby numbers Ro = G0/f z0;
one simulation without Coriolis forcing (hereafter referred to as No-Coriolis case); and five baroclinic cases where
the geostrophic wind profiles are varied with height. The No-Coriolis case is a pressure-driven half-channel flow and
will be used only as a benchmark for the barotropic ABL, i.e. it can be thought of as an f → 0 (or Ro → ∞) limit.
In all these simulations, a surface roughness length z0 = 0.1 m is imposed. While our barotropic cases are similar in
concept to the recent work of Jiang et al. (2018), here we obtain different Ro by changing either G0 or f , but not z0
since this has additional implications on the effective Reynolds number in LES. The filtered equations are solved in a
domain with height Lz =1500m and dimensions (Lx , Ly , Lz ) = (2π, 2π, 1) ×Lz . The baroclinic pressure gradients vary
linearly with height only up to δ = 1000 m, and become constant in the top 500 m of the LES domain. This mimics
baroclinicity generated by surface temperature gradients resulting in thermal winds within the ABL that then weaken√
aloft. The height δ and the magnitude of the surface geostrophic wind, G = U (0)2 +V (0)20 g g = Ug (0) , are used
as the characteristic length and velocity scales to solve the filtered equations in dimensionless form. The condition
Vg (0) = 0 hence aligns the coordinate system with the surface geostrophic wind as per our earlier discussion in
section 3. The velocity field is initialized with the geostrophic wind profiles, ũ = Ug and ṽ =Vg , with an additive noise
sampled from a uniform distribution to randomize the initial conditions. Since the characteristic timescale (response
time of the mean flow) of the ABL is the inertial oscillation periodTi = 2π/f [O(12h)] (Tennekes et al., 1972; Momen
and Bou-Zeid, 2016), the simulations were first integrated on a 64 × 64 × 64 numerical grid for 6Ti to efficiently
develop the mean flow. The output was then interpolated into a finer turbulence-resolving 192× 192 × 256 grid and
integrated for an another 0.5Ti warm-up period to develop the smallest scale eddies, and then over an additional Ti
for computing the flow statistics. All vertical profiles presented after this section are obtained from the high resolution
grid and averaged over the last inertial periodTi .

Since we use LES to compare our proposed model (developed independently) to the logarithmic law in an Ekman
boundary layer, assessing the performance of the LES code in the context of the log-layer "mismatch" or "overshoot"
(Mason and Thomson, 1992) is necessary. Even in channel flows where the log-law is known to be robust (e.g. Marusic
et al., 2013), a persistent problem in LES is that the simulatedmean velocity may deviate from the log-law very close to
the surface for reasons that include the grid resolution (or equivalently the viscosity of the SGSmodel), the grid aspect
ratio, and/or the mismatch between the formulations of wall and SGS models. Other aspects may also be important
and the issue is an active research topic and has been addressed by several studies using different SGS formulations
(e.g. Bou-Zeid et al., 2005; Stoll and Porté-Agel, 2006; Brasseur and Wei, 2010; Kawai and Larsson, 2012). The code
we use here has been validated for a variety of surface boundary conditions in channel flows (No-Coriolis cases), and
showed improved performance in reproducing the logarithmic profile due to the dynamic and scale-dependent SGS
model formulations (e.g. Bou-Zeid et al., 2005; Kumar et al., 2006). In this respect, Figure 1 shows log-law fits to
the normalized mean velocity M /u∗ for the No-Coriolis case (i.e. M = U ) at two different grid resolutions (both with
Lz =1500 m), namely 64 × 64 × 96 (dz =15.6 m), and 192 × 192 × 256 (dz =5.8 m). The profiles of M /u∗ for these
resolutions collapse in the approximate range 0.01 < z/Lz < 0.1 (Figure 1a), and the log-law fits roughly span this
decade of scales. The derived value from the fits is κ = 0.387 when z0 = 0.1 m is imposed (to match LES values). Note
that while our wall model uses a value of κ = 0.4, this only affects the surface stress and its relation to the velocity at
the first grid node, and does not constrain the value the code yields aloft. In the following sections, we will use the
derived values κ = 0.387 and z0 = 0.1 m to compare the log-law to the velocity profiles in the Ekman boundary layer
where Coriolis effects are included.

Figure 2 shows the imposed geostrophic wind profiles (Ug andVg ) normalized by the surface value G0. Relative
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14 Ghannam et al.

to the barotropic simulations (Figure 2a), baroclinicity is imposed by varying either Ug Vg

2d and 2e), or both (Figure 2f), leading to a variety of thermal wind effects. The positive (S+; Figure 2b) and negative
(S−; Figure 2c) shear ABL correspond to dUg /dz = UT /δ > 0 and dUg /dz = UT /δ < 0, respectively. Although in
both cases the geostrophic wind vector G (z ) does not rotate with height (Vg = 0 and αG = 0 throughout the ABL),
the geostrophic shear angle (cf. Equation 8) is β = 0 in S+ and β ◦ − −

0 0 = 180 in S . Conversely, cases of cold (A ; Figure
2d) and warm (A+; Figure 2e) advection result from dVg /dz =VT /δ > 0 and dVg /dz =VT /δ < 0, respectively, where
the angle αG changes with height. In the mixed advection ABL (S−A−; Figure 2f), both Ug andVg change with height
and the profile of αG is nonlinear in z . Note that in these simulations, δ = 1000 m is fixed and UT andVT are varied
such that the magnitude of the geostrophic shear vector Γ0 (Equation 8) is the same for all cases. Also, at z/δ ≥ 1,
Ug andVg become constant (Figure 2), which allows the velocity profiles to approach their geostrophic counterparts.
Since shear production is maintained in the ABL as long as dUg /dz and dVg /dz are nonzero, the velocity profiles
may not become geostrophic within the LES domain especially that there is no temperature inversion present in our
simulations (but see the Supplementary Information for inversion-topped cases). Table 1 summarizes the imposed and
derived parameters for the five barotropic simulations, denoted by B1 to B5 in increasing value of Ro , while Table 2
details those for the baroclinic cases.

5 | RESULTS AND DISCUSSION

In this section we first present results from the LES output, namely the derived boundary conditions and averaged
profiles for the barotropic and baroclinic ABL, followed by an evaluation of the proposed new model in section 3.

5.1 | LES results

5.1.1 | Surface boundary conditions

The Rossby number values imposed here for the barotropic ABL (Table 1) are comparable to those estimated by
Hess and Garratt (2002) for atmospheric measurements, but the derived surface angle α0 (last column in Table 1) is
smaller than the measurements by roughly 5◦-10◦. This angle is computed from the surface stress components as
tan−1 [ (−τ23)/(−τ13) ] in accordance with the definition in Equation 9, and compares well with the DNS results of
Coleman (1999) [reported in the original work as a function of Reynolds number and reproduced by Hess and Garratt
(2002) and Zilitinkevich and Esau (2002)]. It should be noted that the LES wall model, by construction, aligns the
surface stress with the wind at the first grid point, yielding α0 = ατ (0) = αM (z → z0) . The range of Ro in Table 1
is obtained by changing the Coriolis parameter f (except case B1 where G0 is changed instead), leading to a narrow
Ro range compared to an ABL where G0 can be larger than the 6 m s−1 used here. Consequently, the range of α0 is
also limited to 15◦-18◦, but this angle is a decreasing function of Ro as predicted by the similarity theory. The LES-
computed values (Equation 9) and the theoretical similarity predictions (Equation 22) are compared in Figure 3a, where
sin(α0) is plotted against u∗/G0 for the five barotropic cases. The linear fit (cf. Equation 22) results in a value B = B0 =
2.5 (using κ = 0.387), very close to the LES values of Andren et al. (1994) and DNS of Spalart et al. (2008), but slightly
smaller than the average value B ≈ 4 reported in field measurements (Hess and Garratt, 2002). This disparity may
be associated with stratification effects in the free atmosphere, unsteadiness, and/or baroclinicity that are commonly
present in measurements (Zilitinkevich and Esau, 2002). Besides α0, the height u∗/f (listed in Table 1) also shows a
consistent increasing trend with Ro , i.e. the scale height zi = u∗/f c (Equation 6) is an increasing function of Ro . This

(Figure 2b and 2c), (Figure 347
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is evident in the stress profiles in Figure 4c, where τ (z ) approaches zero at lower heights as Ro decreases. Overall,
our results suggest robust values (independent of Ro ) of B = 2.5 and c = 3.5 for the neutral barotropic ABL (values
for each simulation are given in Table 1), where zi is estimated as the height at which τ 2(z ) decreases to 5% of u∗ and
then used to determine c from Equation 6.

Table 2 provides the parameters for the baroclinic ABL. The external parameters for these simulations are identical
to those of the barotropic ABL (simulation B2 in Table 1), namely G = 6 m s−10 , z0 = 0.1 m, and f = 1.4 × 10−4 s−1,
but additionally a constant geostrophic shear Γ0 = 6 × 10−3 s−1 is imposed in the form of thermal winds (UT /δ,VT /δ )
with different angles β0 (given in Table 2). In these baroclinic ABLs, the parameters B and c can be functions of the
parameters Γ0 and/or β0. Table 2 lists the diagnostic values of B obtained from the LES output, denoted diagB and
computed as B/κ = G0 sin(α0)/u∗ as per Equation 23a. These values of B and their dependence on β0 follow the
numerical model values of Arya and Wyngaard (1975) (their Figure 9) closely, with negative values of B when β0 <
0 and small values B = 0.5 when β = 0 (e.g. the warm advection (A+) and positive shear (S+) ABLs in Table 2). To
diagnose the dependence of c on baroclinicity, Figure 3b shows Equation 23b, namely the deviation of B ( diag/κ B as
determined from LES) from its barotropic counterpart B0/κ , plotted against f −1Γ0 sin(α0 − β0) , with all parameters
obtained from the LES output. Note that the ratio of these quantities is c (see Equation 23b). While the relation in
Equation 23b is theoretically nonlinear, the dependence of c on baroclinicity appears to be weak (at least for the range
of simulations we conduct here), such that a linear fit (solid black line in Figure 3b) approximates this relation well (see
also Zilitinkevich and Esau, 2003). This fit has a slope −1/c and results in an average value of c = 2.7 (close to the
barotropic value 3.5). The individual values of c obtained for each simulation (again via Equation 23b) are listed in
Table 2 (ranging between 2.2 and 3.5).

Henceforth, we will denote our models for the cross-isobaric angle (Equation 24), shear stress (Equation 25), and
wind profile (Equation 29) as diagnostic when the values of diagB as obtained from LES (and used to infer c using
Equation 23b) are used. In addition, based on the observation that the the fitted value c = 2.7 gives a good measure
of the scale height ratio of the baroclinic ABL, one can use this average value to obtain the prognostic values of B
using Equation 23b. This gives progB in Table 2, showing that these remain very close to their diagnostic counterpart.
When c = 2.7 and progB are used, the model is referred to as prognostic since it can be applied without the need for
any LES results (within the parameter space we investigate in this paper).

5.1.2 | LES profiles

While half-channel flows are often used as a model of the barotropic ABL, the stress in the ABL drops much faster
than the linear decrease of the half-channel (No-Coriolis case in Figure 4c), particularly as Ro becomes smaller. This
analogy hence leads to a substantial overestimation of the ABL height (e.g. the height at which the stress reduces to
5% of u2∗ ). The nonlinear decrease in the stress profile within the ABL (Figure 4c), which wemodelled as an exponential
in section 3 (Equation 25), also indicates that the departure from a constant stress approximation (say 20% drop from
its surface value) occurs much closer to the surface than is typical in channel flows. As the difference between the
barotropic ABL and a channel flow is merely due to the presence of Coriolis effects here, we turn to the profile of
the cross-isobaric angle αM shown in Figure 4b. These profiles closely follow their stress counterparts in Figure 4c as
to Ro effects, therefore elucidating the important role of the Coriolis force and subsequently directional shear (wind
turning) in shaping the stress profiles. In Figure 4b we also point to the fact that αM in the barotropic ABL resides
between the constant eddy-viscosity solution provided by Ekman (1905) (shown as dashed line) and the Ro →∞ limit
of the similarity theory (No-Coriolis case), and that wind turning becomes more pronounced in the ASL at lower Ro .
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In essence, all these characteristics result from Ro effects on the ABL height, namely that smaller Ro (or smaller ABL
height) lead to stronger interactions between the inner and outer layers. When plotted against f z/u∗ (instead of z in
Figure 4), the profiles of τ u2/ ∗ and/or sin(αM )/sin(α0) at different Ro collapse onto a universal profile (as we illustrate
and discuss later in Figure 6).

Figure 4d shows the difference between the stress and wind vector directions in the barotropic ABL. As Ro
increases, ατ − αM becomes smaller and the assumption on the alignment of the stress and wind vectors is plausible
for a more extensive vertical range (Figure 4d). Nevertheless, while the difference ατ − αM can be ≈ −35◦ at low
Ro within the lowest 200 m of the ABL, this misalignment has minor effects on our modelling arguments for the
barotropic ABL. In reducing Equation 14 to Equation 15, we noted that the first term on the r.h.s. includesG/u∗ and is
much larger than the second term (see also Figure S1 in Supplementary Information). The collapse of the normalized
wind profiles shown in Figure 4a suggests that u∗ is the proper velocity scale in the lower part of the barotropic ABL.
The logarithmic law (also shown in Figure 4a) remains limited to 20-30 m above the surface for the ABL with rotation,
but more extensive for the No-Coriolis case (see inset in Figure 4).

In Figure 5a and 5b, the profiles of the wind and its orientation angle relative to the geostrophic wind vector
exhibit profound differences between the baroclinic ABL and its barotropic counterpart. The surface friction velocity
u∗ no longer collapses the wind profiles (as opposed to Figure 4a) since the varying pressure gradients introduce
height-dependent shear in the ASL in addition to the surface stress. More importantly, these wind profiles also do not
follow the log-law (Figure 5a and its inset). Above the ASL, the wind decreases towards its geostrophic counterpart in
the negative shear (S−) and mixed-advection (S−A−) ABL as Ug decreases with height in these cases. This reduction
in the wind is associated with strong directional shear in the middle of the ABL as depicted by the stress profiles in
Figure 5c.

5.2 | Modelling the stress profile in the barotropic and baroclinic ABL

Figures 6a and 6b show the normalized profiles of the cross-isobaric angle and Reynolds stress in the barotropic ABL
at different Ro . Note that γ = 0 in this barotropic ABL and hence both sin(αM ) and τ (z ) decrease exponentially (cf.
Equations 24 and 25). These profiles are plotted against the dimensionless height f z/u∗ and collapse into one line (their
exponential models), indicating that u∗/f is the similarity length scale for the whole ABL, as opposed to the arguments
of the similarity theory (Ro →∞) where u∗/f is regarded as an outer layer length scale only. Again, this collapse with
u∗/f throughout the ABL is a consequence of finite Ro . The constants B = 2.5 (as obtained from Figure 3a), c = 3.5,
and κ = 0.387 are used in Figure 6a and 6b. While an exponentially decreasing stress profile in the barotropic ABL is
not a novelty in its own right, as it was also suggested by Zilitinkevich (1989) in the form τ (z 2 cf z u)/u −

∗ = e
/ ∗ based

on the similarity of the equations of motion when a constant eddy viscosity closure is employed, the explanation for
this exponential behaviour and its striking connection to the profile of sin(αM ) is original, and depicts the importance
of wind turning (directional shear) in introducing nonlinear effects on the stress profile (compared to a channel flow).
Such nonlinear effects were also typically accommodated by the form τ (z )/u2∗ = (1 − z/δ m) , with m = 1/2 or 3/4
and δ the ABL height (e.g. Stull, 1988), but both this form and the exponential model essentially incorporate outer
layer wind turning effects on the stress profile in the ASL. In addition, we note that our model in Equation 25 (with
γ = 0) is identical to that of Zilitinkevich (1989) when B/cκ = 1 (here this value is 1.7). Figure 6c, 6d, and 6e show
three individual examples of the performance of the stress model at different Ro (simulations B1, B3, and B5 in Table
1) plotted against the height z , and indicate that our assumption on the alignment of the wind and stress vectors,
although not very exact, has limited implications on our model performance in the barotropic ASL.
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Figure 7 shows the profiles of sin(αM ) for the baroclinic ABL along with the model in Equation 24, both in its
diagnostic (using c for each individual run and diagB ) from Table 2) and prognostic (using the average prc = 2.7 and ogB

from Table 2) forms. The barotropic simulation B2, for which we use the fixed values B0 = 2.5 and c = 3.5 (i.e. always
prognostic), is reproduced in Figure 7a for reference. Both the prognostic and diagnostic forms of the model given in
Equation 24 generally capture the turning of the wind with height for most baroclinic ABLs, but show some deviations
(from each other and from the LES output) in the outer layer for cases A−, A+, and S−A− (Figure 7). In the lowest 250
m of these ABLs, which is the primary focus here, the diagnostic model reproduces the LES output very well. The
prognostic model has slight deviations, but it may be noted that the height variation of sin(αM ) is minimal in these
cases (lower panel of Figure 7). While this indicates that the wind vector does not turn appreciably, the geostrophic
wind vector has a height-dependent αG in these cases and hence a cross-isobaric flow is present.

The performance of the stress model (Equation 25), in its diagnostic (dashed blue lines) and prognostic (solid black
lines) versions, is depicted in Figure 8 for the baroclinic ABL. Note that Equation 25a is used to model the profiles
throughout the ABL, although in the ASL Equation 25b is equally valid. In the positive shear (S+) and warm advection
(A+) ABL, shown in Figure 8b and 8e respectively, our assumption on wind-stress alignment is acceptable even far
above the surface; both of these cases exhibit a strong shear in the direction of U , either due to Ug increasing with z
whileVg = 0 (S+), or due to constant U +

g butVg decreasing with z (A ). Hence, Equation 25a (in its diagnostic form)
accurately represents the stress profile in these cases throughout the ABL. A peculiar feature of the warm advection
ABL is that the stress increases with height (Figure 8e), and in the positive shear ABL it remains approximately constant
up to 500 m above the surface. In the other baroclinic ABLs, where either U decreases with height (S− and S− −

g A ),
and/or Vg increases (A− and S−A−), a distinctive layer where the stress decays from its surface value according to
Equation 25 is evident in Figure 8c, 8d, and 8f for simulations S−, A−, and S−A−, respectively. Above this layer,
the diagnostic model departs from the simulated profiles for these cases, but captures the inflections in the stress
associated with the decrease in U (namely as τx changes sign to become positive in the upper part of the ABL).
Evidently, this model overestimates the heights at which the inflection points occur, especially in the negative shear
ABL (Figure 8c) where this inflection point is very close to the surface (roughly 50 m). Compared to its diagnostic
formulation, the prognostic model performs reasonably well across all simulations (solid black lines in Figure 8). This
is due to the fact that the ratio B/c appears in the stress model as a scaling factor (see Equation 25), and since these
parameters are inversely related in Equation 23b, the model is less sensitive to their ratio than to the change in their
individual values. Again, the weak dependence of c on baroclinicity (individual values are very close to the fitted
value c = 2.7) results in very comparable values for diag progB and B (Table 2), suggesting some universal, yet empirical
dependence of B on the geostrophic shear angle β0 and the scale height ratio as noted by Arya andWyngaard (1975)
and Arya (1978).

5.3 | Modelling the wind profile in the barotropic and baroclinic ABL

A comparison between the logarithmic law and the new wind profile model given in Equation 29 is shown in Figure 9
for the barotropic ABL. When plotted in outer layer coordinates, the velocity-defect (M − G0)/u∗ portrays a decent
collapse among different Ro values (Figure 9a). While the logarithmic profile is limited to approximately 0.03f z/u∗,
the new model proposed here matches the LES output up to 0.1f z/u∗. In this barotropic ABL, the wind profile in
Equation 29 has a linear correction B/κ2 (f z/u∗) . Apart from an additional constant, Fiedler and Panofsky (1972)
arrived at amarkedly similarmodel to Equation 29 (with γ = 0) using the nonlinearmixing length proposed byBlackadar
et al. (1969). Figure 9b, 9c, and 9d illustrate examples of the wind profile M /u∗ in the lowest 500 m of the ABL for
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simulations B1, B3, and B5 (increasing Ro ), respectively. These show that the wind model (solid black line) matches
the LES profiles up to few hundreds of meters above the surface, while the log law (grey line) is limited to few tens
of meters. We emphasize that we did not refit the logarithmic profile here for each simulation (neither did we refit
the parameters of our new model); for the logarithmic profile we use the values κ = 0.387 and z0 = 0.1 m obtained
from fitting a log-law to the velocity profile in the channel flow as discussed earlier. Hence, with B ≈ 2.5 being a good
estimate in a barotropic ABL (where γ = 0), the wind model in Equation 29 can be easily used instead of the classic
log-law.

Perhaps more notably, the wind model (diagnostic and prognostic) also matches the LES profiles in the lower
part of the baroclinic ABL remarkably well, as depicted in Figure 10. The vertical extent of the logarithmic profile is
extremely limited in the negative shear, cold advection, and mixed-advection simulations (Figure 10c, 10d, and 10f),
in large part due to the sharp decrease in the stress profiles in these cases (cf. Figure 8), such that the ASL departs
from a constant stress approximation very close to the surface. Conversely, the positive shear and warm advection
ABL have a more extensive logarithmic profile (∼ 60 m) associated with their roughly constant stress. Nevertheless,
the wind model provided by Equation 29 accurately describes the LES profiles up to few hundreds of meters, with a
remarkable match up to 500 m in simulations S+ and A+ (Figure 10b and 10e). The model also captures the decrease
(inflection point) of the wind in cases S− and S−A− (Figure 10c and 10f). Minor sensitivity to the prognostic (solid
line) versus diagnostic (dashed line) parameters of the wind model is noticeable above ∼ 100 m (Figure 10). Note
that this sensitivity increases linearly with the dimensionless height f z/u∗ (see Equation 29). Nevertheless, the wind
model provides an accurate representation of near surface winds up to some 150-200 m above the surface even in
its prognostic formulation.

Using the wind angle and wind speed models (Equations 24 and 29 with the diagnostic values of B and c), Figure
11 shows our Ekman spiral solution (V /G0 vs. U/G0) compared to the LES output. The model captures the spiral
in at least the lowest 200 m of the ABL (this height is denoted by solid (blue) diamond symbols in Figure 11). This
new framework thus bridges the gap between the logarithmic wind profile, valid very close to the surface in the limit
f z/u∗ → 0, and the constant eddy-viscosity Ekman solution for the outer layer (z/z0 → ∞). It is also notable that
our model exhibits excellent agreement with the LES wind spiral in the negative shear and mixed advection ABL (S−

and S−A−), although the stress model departed from its LES counterpart at heights ∼50 m in S− and ∼100 m in S−A−.
This is a consequence of the fact that the wind profile is the integral of τ (z )/Km (this ratio is the vertical gradient of
the mean velocity, which decreases with height since Km ∝ z ), and hence the wind model becomes more robust than
that of the stress (insofar the trend and inflection points in the stress are captured by its model).

6 | CONCLUDING REMARKS

The existence of a logarithmic wind and constant stress profiles in the ASL requires the very limiting assumptions of
a barotropic atmosphere and negligible wind turning (Ro → ∞). For a more realistic representation of the ASL, we
propose a new theoretical framework that relaxes these constraints. On the assumption that the direction of the stress
and wind vectors in the lower part of the neutral ABL are reasonably aligned, we first provide a model for the stress
profile that incorporates the height-dependent cross-isobaric angle (due to finite Ro effects) and geostrophic wind
vector (due to baroclinicity). The vertical variation of this geostrophic velocity is treated as an external (known) linear
forcing, such that the magnitude of the geostrophic shear vector Γ0 and its orientation angle β0 suffice to describe
baroclinicity. Subsequently, we exploit the arguments of the Rossby number similarity theory to model the profile of
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the cross-isobaric angle and derive a closed-form expression for the stress. The vertical distribution of the wind is
then obtained through the traditional (linear eddy viscosity) closure.

The three main results of the work here are

dτ
= −f G (z ) sin (αd M − αG ) ,

z

B B0 1 Γ0
= − sin (α0 − β0) ,

κ κ c f

( ) ( ) ( )
M (z ) 1 z B f z B u f zln ∗

= + + γ ,
u 2 2∗ κ z0 κ u∗ κ cG0 u∗

The first of these provides the stress gradient in the ASL of a barotropic or baroclinic ABL (the profile of τ (z ) is given in
Equation 25b). This was derived on the condition that sin(αM −αG ) , 0, i.e. a cross-isobaric flow exists within the ASL
at finite Ro . The second result extends the traditional resistance law (relation between surface cross-isobaric angle
and geostrophic drag coefficient) to the baroclinic ABL by incorporating the dependence of the parameter B on Γ0 and
β0. This dependence on baroclinicity remains far from trivial as it also incorporates the scale height ratio c = u∗/f zi ,
and while this aspect of the similarity theory warrants further consideration, our findings suggest that c exhibits much
weaker dependence on baroclinicity. Such a relation is useful for the validation of the surface cross-isobaric angle in
weather and climate models (Brown et al., 2005; Svensson and Holtslag, 2009). The third result offers an accurate
means to extrapolate near-surface winds up to some 200 m or more above land or ocean surfaces for wind energy
or similar applications. It provides a correction to the log-law for wind turning (second term on right hand side) and
baroclinicity (last term).

Given our models for the cross-isobaric angle and wind speed (Equations 24 and 29), we were also able to accu-
rately predict the Ekman spiral in the lowest 200 m of the ABL, hence bridging the well-known gap between surface
layer theory (log-law valid in the limit f z/u∗ → 0) and outer layer Ekman-type solutions (z/z0 → ∞). While we
find that the empirical parameter c ≈ 3 (from which the value of the related parameter B can be derived) may be
adequate for both the barotropic and baroclinic ABL, this wind profile still requires knowledge of Γ0 and β0 (through
γ). At a minimum, the present results serve to explain the origins of deviations from the log-law in the ASL of the
commonly-occurring baroclinic ABL, even if detailed information on the baroclinicity parameters is not available.

Our results were tested against a suite of LES experiments for several barotropic ABL flows at different Ro , and
several baroclinic ABL simulations where the orientation of the geostrophic wind vector is changed. We find that the
logarithmic wind profile has a limited extent and a constant stress is virtually non-existent. Conversely, the provided
models match the LES output within the ASL. To this end, the incorporation of wind turning and baroclinic effects
provides a new approach to the interpretation of field measurements on tall (say > 30 m) meteorological towers.
As opposed to the approach of aligning the coordinate system locally (i.e. at each height) with the prevailing wind
direction and hence masking any effects of directional shear, the profiles of the cross-isobaric angle and stress given
in Equations 24 and 25 offer an alternative and more accurate approach to compute surface stresses and improve
flux-gradient closure models. This approach can potentially provide information on the baroclinicity of the mesoscale
environment, even if only measurements from one tower are available.
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TABLE 1 Imposed and derived LES parameters for the barotropic ABL. z0 = 0.1 m in all these cases.

Simulation name Ro (×105) G0 (m s−1) u∗ (m s−1) f (×10−4s−1) u∗/f (m) α0 (deg) B c

B1 2.9 4 0.16 1.4 1168 18 2.4 3.6

B2 4.3 6 0.24 1.4 1680 17 2.5 3.5

B3 5.8 6 0.24 1.03 2200 16 2.6 3.5

B4 8.2 6 0.22 0.73 3027 15 2.6 3.5

B5 15.9 6 0.22 0.38 5850 16 2.6 3.3

TABLE 2 Imposed and derived LES parameters for the baroclinic ABL. The external parameters in all these cases
are based on the barotropic simulation B2 in Table 1 (reproduced here as simulation Barotropic for comparison). The
height δ = 1000 m is used in all these simulations. Positive and negative shear cases are denoted by S+ and S−,
warm and cold advection by A+ and A−, and a combination case (mixed advection) by S−A−. The diagnostic values of
c (7th column) and diagB are obtained from LES output. Prognostic values progB are modelled after Equation 23b
using the mean fitted value c = 2.7 from Figure 3b.

Simulation name UT
δ

−1(×10−3s ) VT
δ

−1(×10−3s ) β0 (deg) u∗ (m s−1) α0 (deg) c Bdiag Bprog

Barotropic 0 0 0 0.24 17 3.5 2.5 2.5

S+ +6 0 0 0.37 1 3 0.5 0.65

S− -6 0 180 0.15 45 2.2 9.7 8.4

A− 0 +6 90 0.3 30 2.5 4.5 4.1

A+ 0 -6 -90 0.26 -30 3.1 -4.8 -3.6

S−A− -4.2 +4.2 135 0.25 50 2.5 6.7 6.5
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(a) (b)

F IGURE 1 Logarithmic profile fits to the normalized mean velocity in channel flow (No-Coriolis cases) at
different LES grid resolutions. (a) Log-linear plot up to 0.4Lz with Lz = 1500 m; and (b) the corresponding
linear-linear profiles. The solid grey is the logarithmic fit resulting in κ =0.387 and z0 =0.1.

(a) (b) (c)

(d) (e) (f)

F IGURE 2 Geostrophic wind profiles normalized by G0 for the barotropic and baroclinic cases. The magnitude of√
the geostrophic wind vector is G (z ) = U 2g +V

2
g .
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Barotropic
(a)

F IGURE 3 Relation between the surface boundary conditions (Equation 23) for (a) the barotropic ABL at different
Ro ; and (b) baroclinic ABL. (a) Linear fit (solid black line) to Equation 23a resulting in B0 = 2.5 (with κ = 0.387). (b)
Deviations of B/κ = G0 sin(α0)/u∗ in the baroclinic ABL from its barotropic counterpart (B0/κ = 6.4) as a function of
baroclinicity parameters (Equation 23b). Solid black line is a linear fit (see Equation 23) resulting in c = 2.7.

Baroclinic
(b)
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(a) (b)

(c) (d)

F IGURE 4 LES profiles for the barotropic ABL at different Rossby number (Ro ) along with the No-Coriolis√
simulation. Upper panel shows (a) mean wind profiles 2 2

M = U +V normalized by u∗. The log-law with κ = 0.387
is also shown in grey (color online). The inset is a blow-up of the lowest 200 m of the domain; and (b) Cross-isobaric
angle αM along with Ekman’s exponential solution (dashed line). Lower panel shows (c) the magnitude of the total√
(resolved + SGS) stress τ = τ2x + τ

2
y normalized by u2∗ with the SGS stresses shown as thin dashed lines; and (d)

difference between the angles of the stress and wind vectors ατ − αM . The kink in the upper part (z > 1000 m) of the
profile of ατ − αM for Ro = 2.9 × 105 (blue line in panel (d)) is imposed: since both stress components become
negligibly small above this height we set the angle difference to 180◦ (the value at z ≈ 1000 m).
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(a) (b)

(c) (d)

F IGURE 5 LES profiles for the baroclinic ABL with different orientation of the geostrophic wind vector (see
Table 2 for simulation names). A barotropic simulation (shown as B in the legend) is also reproduced for reference. (a)
mean wind profiles normalized by u∗. The log-law with κ =0.387 is also shown in grey (color online) and the inset is a
blow-up of the lowest 200 m of the domain; and (b) Wind angle αM relative to surface geostrophic wind. Lower
panel shows (c) the magnitude of the total (resolved + SGS) stress normalized by u2∗ with the SGS stresses shown as
thin dashed lines; and (d) difference between the angles of the stress and wind vectors ατ − αM .
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(a)

(b)

(c) (d) (e)

F IGURE 6 Model validation for the cross-isobaric angle αM and the stress profiles in the barotropic ABL. (a) and
(b) show the profiles of sin(αM ) and τ (z ) (magnitude of the resolved+SGS stress) normalized by their surface values.
Symbols are LES output and solid black lines represent the models in Equations 24 and 25b both with γ = 0, c = 3.5,
B = 2.5, and κ = 0.387. Individual examples for simulations B1, B3, and B5 are shown in (c), (d), and (e), respectively.
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(a) (b) (c)

(d) (e) (f)

F IGURE 7 Model for sin(αM ) in the baroclinic ABL. The height z is on log-scale. Symbols are LES output, dashed
(blue) and solid (black) lines represent, respectively, the diagnostic model (Equation 24 with the parameters c and
diagB from Table 2), and prognostic model (Equation 24 with the parameters o= 2.7 and pr gc B from Table 2).
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(a) (b) (c)

(d) (e) (f)

F IGURE 8 Performance of the stress model (Equation 25a) in the baroclinic ABL. Table 2 lists the parameters B
and c used in the diagnostic and prognostic models as described in the main text and in Figure 7.
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(a)

(b) (c) (d)

F IGURE 9 Comparison between the wind model (Equation 29 with γ = 0, B = 2.5, and c = 3.5) and the
logarithmic scaling for the barotropic ABL at different Ro . (a) Linear-log wind-defect (ageostrophic) profile, and [(b),
(c), and (d)] are individual examples of the wind profile in the lowest 500 m of the ABL. Symbols are LES output and
grey and black solid lines are the log-law and the model, respectively.
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(a) (b) (c)

(d) (e) (f)

F IGURE 10 Comparison between the wind model (Equation 29) and the logarithmic scaling for the baroclinic
ABL in the lowest 500 m of the domain. The parameters B and c used in Equation 29 are the same as those used for
the stress profiles (Figure 8) and reported in Table 2.
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(a) (b) (c)

(d) (e) (f)

F IGURE 11 Model performance for the component winds, U = M cos (αM ) andV = M sin (αM ) , shown as an
Ekman spiral and normalized by the surface geostrophic wind G0. Symbols represent LES output and solid black lines
are the model with wind speed M obtained from Equation 29 and wind angle sin(αM ) from Equation 24. The solid
diamond symbol indicates a height of 200 m above the surface. The parameters diagB and c from Table 2 are used in
Equations 24 and 29.
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